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ABSTRACT

Chi [1-3] proposed a criterion, for obtaining a higher-
order statistics (HOS) based linear prediction error
(LPE) filter associated with a non-Gaussian stationary
process z(k) = y(k)+n(k) where y(k) is a non-Gaussian
signal and n(k) is additive Gaussian noise, which re-
quires all Mth-order cumulants Cag ¢(k1,k3, ..., kar—1)
of the prediction error e(k). In this paper, we pro-
pose a new criterion, which requires only partial Mth-
order cumulants Cp,e(0, k1, k1, ..., kagja—1, kp73-1) of
e(k) where M is even, for obtaining a new HOS based
LPE filter. Theoretically, we show that the proposed
HOS based LPE filter associated with z(k) is the same
as the conventional correlation based (minimum-phase)
LPE filter associated with y(k) (noise-free), and that
they are equivalent to Chi’s HOS based LPE filter asso-
ciated with z(k) for the case that y(k) is an AR process
as well as the case that their order is infinite. Simula-
tion results are provided to show that when y(k) is an
AR process of known order, the proposed HOS based
LPE filter works well.

1. INTRODUCTION

The linear prediction error (LPE) filter can be found
in various science and engineering areas such as speech
processing, seismic deconvolution and spectral estima-
tion. The conventional LPE filter [4] is based on second-
order statistics (power spectra or correlation functions).
Therefore, it is phase blind no matter whether the sig-
nal of interest is Gaussian or not. Recently, a lot of
higher order statistics (HOS) based methods such as [5-
8] for estimating unknown parameters of non-Gaussian
linear processes have been reported in the open litera-
ture. Two common characteristics of HOS based esti-
mators are: They are insensitive to Gaussian noise since
HOS of Gaussian processes are totally zero; they can re-
cover the phase of linear processes. Chi [1-3] proposed a
HOS based LPE filter which was shown to be minimum-
phase, and the associated linear prediction polyspectral

estimator possesses the property of maximum polyspec-
tral flatness measure as well as the property of maxi-
mum higher-order entropy. However, the coefficients
of Chi’s HOS based LPE filter must be solved from
all Mth-order cumulants Ca,¢(ky, k3, ..., kar—1) of the
prediction error e(k). In this paper, we propose a
new criterion which requires only partial Mth-order cu-
mulants Cpy,¢(0, k1, k1, ..., kagja—1) for obtaining a new
HOS based LPE filter. Then we present the equivalen-
cies among the proposed HOS based LPE filter, Chi’s
HOS based LPE filter and the conventional correlation
based LPE filter. Some simulation results for the case of
AR process are provided to support the proposed HOS
based LPE filter. Finally, we draw some conclusions.

2. PREDICTION ERROR FILTER BASED
ON HOS BY A NEW CRITERION

Assume that z(k), k = 0,1,..., N—1 are the given real
stationary non-Gaussian noisy measurements based on
the following convolutional model

z(k) = y(k) + n(k) = u(k) = h(k) + n(k) 1)
where u(k) is a real, zero-mean, independent identically
distributed (i.i.d.) non-Gaussian process with variance
02 and Mth-order cumulant v, n(k) is zero-mean
Gaussian noise and h(k) is the impulse response of a
linear time-invariant (LTI) causal stable system. As-
sume that v(k) is a FIR filter of order p and its output
e(k) is given by

P
e(k) = z(k) »v(k) = z(k) + Ev(i) z(k-1i) (2
i=1

Note that v(0) = 1. Let 8 = (v(1),v(2),...,v(p))’ and

w(k) = h(k) = v(k). (3)
Then we have, from (1) to (3), that
e(k) = (k) + n(k) » v(k) (4)
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where

§(k) = y(k) * v(k) = u(k) = w(k). (5
It is well known that the autocorrelation function of
&(k) is given by

bee(l) = EE(R)E(k + D] = 03 duu()  (8)

where
(- -]

duu()= Y win)yw(n+1). )
n=-—00
Some well-known facts regarding the conventional
LPE filter are summarized in (F1) as follows:

(F1) The conventional (minimum-phase) LPE filter as-
sociated with y(k) is the v(k) which minimizes the
mean square error E[£2(k)] = é¢¢(0). When y(k)
is the output of a p-th order AR system 1/A(2),
the conventional LPE filter of order p associated
with y(k) is equal to A(z) and ¢¢e(1) = 0,¥1 # 0;
when y(k) is a wide-sense stationary process, it is
a whitening filter (¢¢¢(I) = 0, V1 # 0) for p — .

Chi [1-3] proposed a HOS based LPE filter by minimiz-
ing

I (@) = f: f: Cly (ks kg, kag—y)  (8)

ky==00 kproi=-00

and he showed that the optimum LPE filter is
minimum-phase. Next, we show the following fact.

(F2) The optimum pth-order LPE filter associated
with Jps(@) is the same as the conventional pth-
order LPE filter associated with y(k) (noise-free,
ie., e(k) = £(k)) when M is even and y(k) is an
AR process of order p.

Proof: Since

o0 o0
JM(Q) = Z Z Cjzl,g(klykh seey bM—l) = 13‘
ki==c0 kay-i=-0c0
oo -]

B3>

ki=—00 kp—1=-00

=7 Y, Y, wn)w(m) Y w(ntk)w(mtk)

) 2
E wn)w(n + ky)...w(n + ch..l)}

=—00

n=—0om=-00 ki=—00
00
3 wn+kaor)w(m + ka_y)
kr-1=—00
00 00

=7 Y, Y, w(n)u(m)edi(n —m)

ns—ooms-—0o0

00
= $
£

.y ,.i #0=(Z)

When M is even, it is sufficient that Jas(8) is minimum
if |¢¢¢(1)] is minimum for all . A set of sufficient condi-
tions for |@¢e(l)] to be minimum for all ! is that ¢¢¢(0)
is minimum and ¢¢¢(I) = 0 for all I # 0 in the mean-
time. By (F1), we conclude that the optimum #(k) is
the same as the conventional LPE filter associated with
y(k) when y(k) is an AR process of order p. Thus we
have completed the proof.

{ > w(m+t)w(m)} M-y

ms=-00

3 k. )

Iz~00

On the other hand, we obtain the optimum LPE fil-
ter #(k) by minimizing a new criterion as follows:

00 ) 3
E E CM,c(oahl;kh---)kLnkL))

ky==00 kz=-~o00 (10)

where M(> 4) is even and L = M/2—1. Next, we show
the following fact.

Tu(8) = (

(F3) The optimum #(k) associated with Jar() where
M is even is the same as the conventional pth-
order LPE filter associated with y(k) (noise-free,
ie., e(k) = €(k)).

Proof: Since
00 )
E e z: CM,S(osklikll"‘)kL)kL)
ki=-00 kr=-

=M i i iw’(k)w’(k+k1)...w’(k+kL)

ki1==~00 kr==00 k==00

L+1
w’(k)) =————;c3;’ﬁ1 $&t1(0), ()

(£

k=—o00

we obtain, by substituting (11) into (10), that
T (@) = {7k /o3 } 6¥40). (12)

Hence, minimizing Jp(f) is equivalent to minimizing
the mean-square prediction error E[¢%(k)]. In other
words, the optimum (k) is the same as the conven-
tional LPE filter associated with y(k) (noise-free, i.e.,
e(k) = £(k)). Thus, we have completed the proof.

One can easily infer, from (9) and (12), that the pro-
posed HOS based LPE filter is different from Chi’s HOS
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based LPE filter. However, for the case that y(k) is an
AR process of order p, they are equivalent to the pth-
order conventional LPE filter by (F2) and (F3) when
M is even. For the case that y(k) is not an AR process,
we have the following fact.

(F4) The optimum #(k) associated with Jp(g), the
one associated with Jas(2) and the conventional
(minimum-phase) LPE filter associated with y(k)
(noise-free i.e., e(k) = £(k)) are equivalent when
M is even and their order p is infinite.

Proof: That the optimum 6(k) associated with Jr(f)
is equivalent to the conventional LPE filter associated
with y(k) for any p has been shown in (F3) as long as
M is even. Hence they are also equivalent for p — oo.
Next, we show that the latter is equivalent to Chi’s
HOS based LPE filter for p — 00. By (F1), ¢¢¢(0) is
minimum for p — oo when ¢¢¢(I) = 0, VI # 0. It is suf-
ficient that Jas(8) given by (9) with an even M is mini-
mum when @¢¢(0) is minimum and ¢¢¢() =0, VI#0.
Thus Chi’s HOS based LPE filter is also equivalent to
the conventional LPE filter for p — o0.

Now, we present how to solve for the optimum fil-
ter coefficients ¢ based on (10). For simplicity, assume
that M = 4. We use a steepest-descent type iterative
algorithm to search for a local minimum of J4; where

K 2
j4 = ( Z c4,¢(01k1 k)) (13)

k==K
in which 04'.(0, k, k) is the biased sample cumulant as
follows:

N-|k|

% T €2(i)e3 (i + k])

Cac(O,k, k) =

| & 2 L NI :
- (-ﬁze?(i)) -2 v Z e(de(i+ k)| (14)
i=0 =0
For the nth iteration, § is updated by

bn = 8oy — PITr(Hn-1)] g, _, (15)

where 0 < p < p is a real number, T'r(H,_,) denotes
the trace of H,-3, and g, md Hy, .1 denote the gra-

dient and the approximate Hesslan matrix for § =
respectively, as follows:

Qn—l’

8]4
fa1™ 3g

K
=2 ( 3" Cuel0,k, k))

_0:‘_1 k=-K

<& oé.,.(o,k,k)) 18
(b=z-x 02 lgi._| ( )

X, 8C44(0,k, k))
2 )
0=f,_, N (baz-:x o2

X .(o,k,k))'
(5

&J,

Hooy = 8_

38 (7

.'."'L-x
Computing g _  and Ha_; requires 8e(k)/dv(i) which
can be easily obtained by taking partial derivative of
(2) with respect to v(i) as follows:

e(k) _
80( i)
Remark that updating ¢ by (15) with p = p normally

leads to the decrease of J4, otherwise, a smaller p must
be considered.

= z(k —1) (18)

3. SIMULATION RESULTS

A zero-mean, Exponentially ii.d. random sequence
u(k) with variance 03 = 1 and 4th-order cumulant
¥4 = 6 was generated as the input to a second-order AR
system with transfer function H(z) = 1/A(z) where

A@Z)=1+4a(l)z ' +a(2)2"2=140.72"" +0.2:-2

(19)
and then a white Gaussian noise sequence was added to
the output of H(z) to obtain the synthetic noisy data.
The length of data was N = 4096 and the parameter K
(see (13)) was set to 6. Mean and standard deviation
of estimated parameters were calculated from 60 inde-
pendent realizations. The initial value gy = (0,0)’ was
used for each realization. The simulation results asso-
ciated with the conventional correlation based LPE fil-
ter obtained by the well-known Burg algorithm (4] and
those associated with the proposed HOS based LPE
filter obtained by the previous steepest-descent type it-
erative algorithm are shown in Table I. Observe, from
this table, that when SNR is large (SNR = 400), mean
values of estimated parameters associated with the con-
ventional LPE filter and those associated with the pro-
posed HOS based LPE filter are very close to the true
AR parameters. When SNR is small (SNR = 10), bi-
ases of estimated parameters associated with the latter
are much smaller than those associated with the for-
mer. Moreover, mean square errors (equal to the sum
of variance and square of bias) of estimated parameters
associated with the proposed HOS based LPE filter are
also smaller than those associated with the conventional
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LPE filter for SNR = 10, although standard deviations
of estimated parameters associated with the latter are
smaller than those associated with the former. There-
fore, the simulation results support that the proposed
HOS based LPE filter approximates the true AR pa-
rameters well.
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Table I. Simulation results.

a(1) = 0.7, a(2)=0.2, N = 4096, 60 independent runs.

Estimated values (mean + one standard deviation)

Conventional LPE filter
obtained by Burg alg.

HOS based LPE filter obtained
by the proposed criterion

SNR V(1) 0] V(1) )

400 [0.6978 + 0.0129 | 0.1988 + 0.0138] 0.7039 + 0.0533 0.1971 + 0.0593
40 ]0.6717 +0.0123 | 0.1797 + 0.0135] 0.7024 +0.0571 | 0.1961 +0.0629
10 ]0.5993 * 0.0130 0.1291 * 0.0138 0.7011 % 0.0706 | 0.1955 +0.0766

4. CONCLUSIONS

We have presented a new criterion given by (10) where
M is even for obtaining a new HOS based LPE filter
associated with a non-Gaussian linear process z(k) =
y(k) + n(k) (see (1)) where y(k) is a non-Gaussian sig-
nal and n(k) is additive Gaussian noise. Theoretically,
we have shown (see (F2) through (F4)) that the pro-
posed HOS based LPE filter associated with z(k) is
the same as the conventional (minimum-phase) LPE
filter associated with y(k) (noise-free), and that they
are equivalent to Chi’s HOS based LPE filter based on
(8) associated with z(k) for the case that y(k) is an AR
process of known order as well as the case that their
order is infinite. Moreover, the computational load for
obtaining the proposed HOS based LPE filter is much
less than that for obtaining Chi’s HOS based LPE fil-
ter because the latter requires all Mth-order cumulants
of e(k) and the former requires only partial Mth-order
cumulants of e(k) (see (8) and (10)). Some simula-
tion results were provided to show that when y(k) is
an AR process of known order and the number of data
used is large enough, the smaller SNR, the more the
proposed HOS based LPE filter outperforms the con-
ventional LPE filter.
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